KS101B/KS103/KS103S Ultra Sonic Range Finder

Technical Specification
Rev 3.58
Date: Mar. 10, 2011
Modify Date: May 23, 2014
Shenzhen Dauxi Technologies Co., Ltd. All rights reserved.

KS103 VERTICAL KS103 BENDING

Function Abstract

Ranging with temperature revised, high precision in distance

Range in 1cm to 800cm, using patent technologies

Detecting frequency up to S00Hz, which can detect 500 times per second

Use slave I°C bus/TTL serial bus, detect master’s command automatically

20 IC address and can be changed, the address is 0xd0-Oxfe (except 0xf0,0xf2,0xf4,0xf6)
Broadcast address 0x00 allowed(except KS103/KS103S)

Short and high precision temperature detect of 83ms each time

Sleep automatically after 5s without commands, wake up by master at any time

Short range in 10cm, 20cm to 470cm, 47 steps total

Ims in light intensity detect. Special command for light intensity detect

Industrial and Extended Temperature range(-30°C~+85°C)(KS103/KS103S work in 0~70°C)
Wide operating voltage range (3.0V~5.5V)

The communication rate of the I2C mode 50~100kbit/s

Unique filtering noise reduction technology, can still work under noisy power supply

Pb free

Electrical Specification:

Operating Voltage: 3.0V~5.5V

Operating Current: 1.6-2.7 mA@S5.0V, typical 10.6mA@5.0V, max
Standy Cueernt: 500uA@5.0V; max.

Use nano Watt Technology, power saving in sleep mode. Went into sleep mode automatically after

5s without I’C command.

Connection pins marked on the KS101B/KS103/KS103S: VCC, SDA/TX (SDA), SCL/RX (SCL),
GND and MODE. Setting the MODE pin for I°C mode or TTL serial mode, if the MODE pin is
left unconnected, KS101B/KS103/KS103S operates in 12C mode; if the MODE pin is connected
to OV before power on, KS101B/KS103/KS103S will work in TTL serial mode. The TTL serial
port is not 232 serial port, TTL level can be directly connected with the MCU’s TXD/RXD, but
not with 232 serial ports directly connected (directly connected will burn out the module), you
should need a MAX232 to connect to 232 serial port..

I’C mode

KS101B/KS103/KS103S’s connection:

As shown, there’s five pins “VCC, SDA/TX, SCL/RX, GND, MODE” on
KS101B/KS103/KS103S’s board. The VCC pin should connect to master’s VCC, the VCC must
be in range of 3.0-5.5V . The GND connect to master’s ground. The MODE pin should be left
unconnected. It’s only be used for program when producing. The SCL is I°C bus’s clock line, and
SDA is I°C bus’s data line. The SCL and SDA lines should each have a pull-up resistor to VCC
somewhere on the I°C bus. We suggest one pair of resistors about 1.8k-4.7k on master board.
Some master modules already have pull-up resistors to act as I°C bus and you can connect
KS101B/KS103/KS103S to I’C bus directly.

Note 1: To achieve KS101B/KS103/KS103S°S best working conditions recommended +5 V power supply. Moreover, VCC and GND is
strictly prohibited reverse, it may damage the circuit.

Here’s the circuit diagram(20PCS KS101B/KS103/KS103S on I°C bus):

VCC vee
R1 R2
4. 7K 4. 7K

vee ([
i B] B -

GND |(dan
MASTER
MODE|O) MODE| D) MODE|D) MODE|O)
GND | GND|(GND | (I GND|(
SCL/RY|OA SCL/RY| 8 L X X TUN(C SCL/R¥| (@
SDA/TX| O SDA/TX| (34 SDA/TX| (34 SDA/TX| (3
VCC [l VCC | [— VCC |[—s— V(C || —
K$103-0XD0 KS103-0XD2 KS103-0XFC KS103-0XFE

KS101B/KS103/KS103S’s default address is 0xe8 and can be change to the one of 0xd0, 0xd2 ,
0xd4, 0xd6, 0xd8, Oxda, Oxdc, Oxde, 0xe0, Oxe2, Oxe4, 0xe6, Oxe8, Oxea, Oxec, Oxee, 0xf8, Oxfa,
Oxfc, Oxfe. @

Note 2: 0xd0~0xfe except address “0xf0, 0xf2, 0xf4,0xf6”, this 4 address are reserved for 10 bit slave I°C address.

Sequence of change I’C address

Delay
Ims

Delay
Ims

New

Delay 5
Address

Ims

Delay

0x9a 100ms

| Address ‘ 2

Address | 2 ‘ 0x92 ‘ | Address

2 | 0x9e

‘ Address

Change I°C address must follow the sequence and the delay time showed on table is the least
delay time. It’s won’t be trouble because there’s the right function(seen in attached files No.3)
change i2c_address(addr old,addr new) to refer to. It’s used for 51 MCU as an example.

You can’t cut off the power when changing I°C address or the EEPROM may be corrupted .After
changing repower KS101B/KS103/KS103S and the LED on the back board will flash the new
address in binary system. The change I°C address function should not put in loop for ever such as
while(1) loop. We suggest put it in initialization function, to make sure change I°C address
function run just one time when power up.

For KS101B,If you don’t want to watch the old address, you can use general call address 0x00
instead.

GENERAL CALL ADDRESS SUPPORT (KS101B ONLY)

The addressing procedure for the I°C bus is such that,the first byte after the Start condition usually
determines which device will be the slave addressed by the master. The exception is the general
call address,which can address all devices. When this address is used, all devices should, in theory,
respond with an acknowledge.The general call address is one of eight addresses reserved for
specific purposes by the I’C protocol. It consists of all 0°’s with R/W = 0. You also can use address
0x00 to control KS101B, but you cannot get the range result by address “0x00+1”, you should use
the right address from 0xd0 to Oxfe to get KS101B’s range result.

KS101B/KS103/KS103S’s Work Sequence
After power on KS101B/KS103/KS103S, back green LED will flash the 8-bit address in binary
system. Short flash twice will be “1”, slow flash once will be “0”. Such as address Oxea, it's

0B11101010 in binary system, the green LED will be slow light—off—short flash
twice—off—short flash twice—off—short flash twice—off—slow flash once—off—short flash

twice—off—slow flash once—off—short flash twice—off—slow flash once.®

Note 3: LED flashing green light may stimulate the eyes, try not to look at flashing LED directly, you can use the corner of the eye to

observe the flashing.

Green LED

After power up, when KS101B/KS103/KS103S receive valid command, it will stop flashing and
begin to detecting at once.

KS101B/KS103/KS103S use the I°C interface to communicate with master, automatic response to
master I°C control command s for the 8-bit data, there’s command s send process:

Address

L

Register 2

L 4

8bit command

Delay waiting or judge
whether SCL==12

Receiving 16bit data

Multi-range mode(KS103S doesn’t support command 0xb4 and Oxbc and temperature command)
Detecting command from 0x01 to Ox2f, the greater the value, the greater the signal gain.
Command 0x01 corresponding with range about 100mm, command 0x02 corresponding with
range about 200mm, , and so on, command 0x2f corresponding with range about 4700mm.
The smaller the range, the faster it detecting. Detection time based on the ultrasonic transmission
time plus about 1ms. Note that the 16-bit value returned is a unit of time in ps, and the time spend
is from ultrasonic transmit to receive.

And most useful range will be range of 0-5m of command 0xb0/0xb2/0xb4, and range of
command 0-11m of 0xb8/0xba/0Oxbc. By using "address + register 2 + ranging command" to begin
a new ranging, and then delay or wait for corresponding time that the table 1 specified, and then
using the read function to read the value of register 2 and register 3, then you can get the 16-bit
distance data. Command 0xb0 and 0xb8 will return distance in millimeter ,it’s calculate by 25

‘C(about 340m/s) according to the actual detecting time; command 0xb2 and Oxba detecting
returns a unit ps of time spend, and the time spend is from ultrasonic transmit to receive.

To get accurate distance measurement value, use 0xb4 or Oxbc command, these two commands
automatically using high-precision temperature revised technology, more stable and more accurate
detection of the value. You can also use 0xb2/0xba (transmission time) + 0xc9/0xca/0xcb/Oxcc
(ambient temperature) combination, to detect the ultrasonic transmission time in the air and the
corresponding temperature, and then translated by the speed of sound to get the exact distance
values. Using a temperature revised 0xb4 command, the most accurate cac reach up to 1mm, the
error is 0.152mm/17cm. With the change of environment and development of technology,
KS101B/KS103/KS103S internal formula may not be in future. For millimeter-level accuracy of
the distance, please use the latest possible formula to get the precise distance value when you get
ultrasonic transit time and temperature.

Meanwhile, in the long-range detection, if the power supply is noisy, KS101B/KS103/KS103S
will be likely not reach lcm ~ 650cm maximum range, so if you use noisy power supply (for
example, take power from the computer USB port), please use the detection range of 0-5m
detection commands to get the right value.

Intelligent recognition of detecting end

After KS101B/KS103/KS103S finish detect command sending, it take some time to get the right
side 16-bit I°C data. The user only know the maximum detecting time, but we do not really know
the actual time of each detecting. KS101B/KS103/KS103S use an intelligent recognition
technology. Simply say, SCL will remain low when KS101B/KS103/KS103S’s detecting, when it
finish detecting SCL will become high level at once. User can check whether the SCL line goes
high by using while (! SCL) statements to wait, SCL line goes high indicates that the detecting is
completed, you can start receiving 16-bit data through the I°C bus. Note that when finish sending
the detect command, you need to delay at least 40us and then begin to judge whether the SCL line
goes high, for the most fast command Oxa0 will take about 1ms, so we suggest to delay about 1ms,
it won’t interrupt the ongoing detecting, also won’t reduce the detection efficiency. You can also
delay a period of time and then starte to receive the 16-bit IC data. ¥

Note 4: The bus clamp detection methods can provide customers greater speed and efficiency of detection, rather than waiting at least
every 65ms. In other words, most of the time users only need to quickly know whether there are obstacles within 1m range. Specific delay
time should be greater than the maximum detecting time show in Table 1.

Intelligent recognition of detecting end will be a default configuration, if you do not want to judge
the SCL line’s level, you can sending a command 0xc3 to close this function, then power off and
restart KS101B/KS103/KS103S SCL line won’t go low when detecting. If you want to restore
SCL clamp down function, you can send 0xc2 command to KS101B/KS103/KS103S.

Intelligent recognition of detecting end is automatically saved after configured, and immediately
working under the new configuration.

Follow the attached files 3, the configuration code should be as follows:

write_byte (0xe8, 2,0 xc2), //SCL clamp

delayms (2000);

KS101B/KS103/KS103S will be run according to the new configuration when restart.

Detect command

When finish sending detect command , KS101B/KS103/KS103S will be based on to detect

command

to enter the appropriate detection mode, the host at this time should wait for some

time before the beginning of the query results by to from I12C bus, 12C bus early inquiry will be

“Oxff ““values. Note that each frame to detect command format is:

[T°Caddress

Register 2 |

8bitdata |

Command and register list

Return value

Return value

Register | Command range(Decimal) range(Hex) Note

0 0-255 0-0xff Produce year

1 1-52 0x01-0x35 Produce week

2 | 00r | 507 | 000t | St ST o i N i
2 | 00 | eotishs | ooz | Snis oTsbou o e i Masmn i
2| 003 | o617l | on2onectus | s oTou Somm v i oo e
> | 00 | 502308 | 0xs0-0000sgs | Kt oTsbon omn v v Mg i
2| 005 | 0w | 0sa0ubass | R oT e S, i s
> | 006 | S0 | O0us0uiseps | Rnis oTsbow omn e v g i
R T T e e
> | 008 | s0d6lous | 0xs00x1208ss | K o7t Momm v i s e
> | 000 | s0s103s | 0xs0-0ntaasgs | Knie aTsbon tomn v v Mepn i
> | o0 | 667ns | 0k20xtesaps | St b 100, i s i
> | 00 | oveuus | Ouscostscbus | Snih b 00 e M i
2| o | oo | Ouitoxiboeus | Rnie el 10, o i Mo s
O I T e e e
> | o | 70807 | OuROxiens | St b i, i e M i
R I e e v
> | oo | 7092 | ostroniops | Snis b i, e M i
> | oI | 7rmons | 0vka0esigs | Sttt 10, e s i
2 | o | 7o | ovka0usons | Snis it 1o, s e e i
2 0x13 77-10963ps | Oxdd-0x2ad3ps | on®® o Sp0n VB et K o
> | oula | 7oisions | onrodidgs | R Tt S e i s
> | os | evinrmis | owsroamsis | Snis ol 2, s e M i
> | ovte | 701260 | oxtronstongs | St b 2, i e s i
2| 007 | i | oo | Rne el 2, e i M s
> | ot | 1913sass | 0stronsings | St b 2, e M i
2| 009 | 7rassis | ovadoussops | Rnie el 20, o i M s
2 0xla 93-15002ps 0x5d-0x3a9aps Range of about 2600mm, return ps. Maximum time

consume = Maximum return value + 1000us

Range of about 2700mm, return ps. Maximum time

2 Ox1b 63-15579s 0x3f-0x3cdbps consume = Maximum return value + 1000us
Range of about 2800mm, return ps. Maximum time
2 Oxlc 79-16156ps 0x4£-0x3flcps consume = Maximum return value + 1000us
2 0x1d 79-16733ps 0x4£-0x415dus Range ofiabout'2900nnn, return ps. Maximum time
consume = Maximum return value + 1000us
Range of about 3000mm, return ps. Maximum time
2 Oxle 79-17310ps 0x4f-0x439eps consume = Maximum return value + 1000us
Range of about 3100mm, return ps. Maximum time
2 Ox1f 77-17887ps 0x4d-0x45dfps consume = Maximum return value + 1000us
Range of about 3200mm, return ps. Maximum time
2 0x20 91-18464ps 0x5b-0x4820ps consume = Maximum return value + 1000us
Range of about 3300mm, return ps. Maximum time
2 0x21 79-19041ps 0x4f-0x4a61ps consume = Maximum return value + 1000us
Range of about 3400mm, return ps. Maximum time
2 0x22 79-19618ps Ox4f-Ox4ca2ps consume = Maximum return value + 1000us
Range of about 3500mm, return ps. Maximum time
2 0x23 79-20195ps Ox4f-Ox4ee3ps consume = Maximum return value + 1000us
2 0x24 79-20772ps 0x4£-0x5124us Range ofiabout '3600rnm, return ps. Maximum time
consume = Maximum return value + 1000us
Range of about 3700mm, return ps. Maximum time
2 0x25 77-21349ps 0x4d-0x5365ps consume = Maximum return value + 1000us
Range of about 3800mm, return ps. Maximum time
2 0x26 79-21926ps 0x4f-0x55a6ps consume = Maximum return value + 1000us
Range of about 3900mm, return ps. Maximum time
2 0x27 63-22503ps 0x3f-0x57¢7ps consume = Maximum return value + 1000us
Range of about 4000mm, return ps. Maximum time
2 0x28 79-23080ps 0x4f-0x5a28us consume = Maximum return value + 1000us
2 0x29 63-23657 s 0x3£-0x5¢69ps Range ofiabout '4100rnm, return ps. Maximum time
consume = Maximum return value + 1000us
Range of about 4200mm, return ps. Maximum time
2 0x2a 79-24234ps 0x4f-0xSeaaps consume = Maximum return value + 1000us
Range of about 4300mm, return ps. Maximum time
2 0x2b 79-24811ps 0x4£-0x60ebus consume = Maximum return value + 1000us
Range of about 4400mm, return ps. Maximum time
2 Ox2c 79-25388ps 0x4f-0x632cps consume = Maximum return value + 1000us
Range of about 4500mm, return ps. Maximum time
2 Ox2d 77-25965ps 0x4d-0x656dps consume = Maximum return value + 1000us
Range of about 4600mm, return ps. Maximum time
2 Ox2e 79-26542ps Ox4f-0x67aeps consume = Maximum return value + 1000us
Range of about 4700mm, return ps. Maximum time
2 0x2f 63-27119us 0x3£-0x69efus consume = Maximum return value + 1000us
2 0x70 void void First level noise reduction, factory default settings,
for battery-powered
2 0x71 void void Second level noise reduction, for USB-powered
. . Third level noise reduction, for long distance
2 0x72 void void USB-powered
2 0x73 void void Fourth level noise reduction, for switching power
supply
. . Fifth level noise reduction, for noisy switching
2 0x74 void void power supply
2 0x75 void void Sixth level noise reduction, for high noise power
supply
2 Ox8a void void 12C communications test command, after sending
2 0x8b void void LED will flash display the binary value of the
; ; command
2 0x8c void void
2 0x92 void void The second sequence change address
2 0x9a void void The first sequence change address
2 0x9e void void The third sequence change address
Light intensity detect, the light is stronger, the
2 Oxa0 0-1023 0-0x3ff greater the value, the detect takes about 1ms
0-5m range, normal range (without temperature
2 0xb0 10-5200mm 0x0a-0x1450mm | revised), return mm, detection took about 33ms

maximum

0-5m range, normal range (without temperature

Noise reduction of power supply command

2 0xb2 79-30000us 0x4£-0x7530ps | revised), return ps, detection took about 32ms
maximum
0-5m range, normal range (with temperature
2 0Oxb4 10-5200mm 0x0a-0x1450mm | revised), return mm, detection took about 87ms
maximum(KS103S doesn’t support this command)
0-11m range, normal range (without temperature
2 0xb8 20-11280mm | 0x14-0x2c10mm | revised), return mm, detection took about 68ms
maximum
0-11m range, normal range (without temperature
2 Oxba 159-65278us 0x9f-Oxfefeus revised), return ps, detection took about 66ms
maximum
0-1lm range, normal range (with temperature
2 Oxbc 20-11280mm | 0x14-0x2c10mm | revised), return mm, detection took about 87ms
maximum(KS103S doesn’t support this command)
2 0xc0 void void Open LED flash when detecting, default
2 Oxcl void void Close LED flash when detecting
2 0xc2 void void SCL line force to low when detecting, the default
2 0xc3 void void SCL line keep high level when detecting
2 Oxc4 void void 5 seconds for sleep waiting
2 0xc5 void void 1 seconds for sleep waiting
Return 9-bit precision temperature data, according to
DS18B20 format, range of -40 C - +125 C,
2 0xc9 0-255 0-Oxff detection takes about 83ms(KS103S doesn’t support
this command)
Return 10-bit precision temperature data, according
to DS18B20 format, range of -40 ‘C - +125 C,
2 Oxca 0-255 0-Oxff detection takes about 168ms(KS103S doesn’t
support this command)
Return 11-bit precision temperature data, according
to DS18B20 format, range of -40 C - +125 C,
2 Oxcb 0-255 0-Oxff detection takes about 315ms(KS103S doesn’t
support this command)
Return 12-bit precision temperature data, according
to DS18B20 format, range of -40 C - +125 C,
2 Oxce 0-255 0-Oxff detection takes about 610ms(KS103S doesn’t
support this command)
Register 3 and register 2 use together, register 2
3 0-255 0-0xff returns high 8-bit of 16-bit data, and register 3,
returns the lower 8-bits of data 16-bit data.
4 0-255 0-0xff High 8-bit data of power on times
0-255 0-0xff Low 8-bit data of power on times
6 0-255 0-0xff Program version
7-15 0 0 Reserved
Table 1

KS101B/KS103/KS103S recommend using the default battery power. If you use noisy power

supply, distance values may be volatile instability. Users can send command 0x70, 0x71, 0x72,
0x73, 0x74, 0x75 to configure KS101B/KS103/KS103S ranging module clutter suppression.
Command 0x70 will configure the module on first level noise reduction, suitable for

battery-powered occasions, but also the factory default settings. Command 0x71 will enable the

module to be second level noise reduction, for USB-powered. Command 0x72 will configure the

module to be third level noise reduction, for long distance USB-powered. Command 0x73 will

configure the module to be fourth level noise reduction, for switching power supply. Command

0x74 will configure the module to be fifth level noise reduction, for noisy switching power supply.

Command 0x75 will configure the module to be sixth level noise reduction, for high noise power
supply.

Should choose smaller values such as 0x70 to ensure accuracy. The higher the noise reduction
level, the greater the probability that the waveform is eliminated.

Configuration is very simple, send commands to the module as follows: "I°C address + register 2
+0x70/0x71/0x72/0x73/0x74/0x75 " , and at least 2 seconds delay after sending to allow the
system to automatically configure . And begin work under the new configuration.

Follow the attached files 3, the configuration code should be as follows:

write_byte (Oxe8, 2,0 x71), //config. to the second level

delayms (2000);

KS101B/KS103/KS103S will be run according to the new configuration when restart.

Temperature detecting (KS101B and KS103 only)

Temperature detecting included 0xc9, Oxca, 0xcb, Oxcc total of four commands, through the "[*C
address + register 2 + 0xc9/0xca/Oxcb/0xcc" sequence, delay or wait for corresponding time that
table 1 specified, and then use register read function to get the 16-bit data by reading the value of
register 2 and register 3, the 16-bit data obtained to comply with the rules DS18B20 chip
temperature readings, the specific information please refer to the chip DS18B20. To Oxcc
command , for example, it will get a total of 16-bit data. The high five bit of 16-bit data is the sign
bit, if the measured temperature is greater than 0°C, the high five bit will 00000, and then the
16-bit data divide by 16 and we can get the temperature.

Light intensity detecting

Use 0xa0 command, through the "I’C address + register 2 + 0xa0 " sequence, delay or wait for
Ims and then use register read function to read the value of register 2 and register 3, you can
quickly get the ambient light intensity. The stronger the light, the greater the return value, and the
return value is between 0 to 1023.

Sequence

Sequence 1: Send detect command to KS101B/KS103/KS103S(Such as register 2):
[Address | Register 2 | 8-bit command |

ACK : Host wait a bit 0 from KS103
Address such as KS103'S "Oxe8" Wite the register number such as "2" Wite the command such as "0xb0"

>40us

]
Defauit:SCL=0 when detecti
User define:SCL=1 when detecti

Sequence 2: After sequence 1, wait for SCL goes high or delay 100ms, then begin to receive

16 bit data, high byte first low byte behind:
[Address+1 | Read Register 2 [Address+1 | Read Register3 |

ACK : Host wait a bit 0 from KS103
Not ACK : Host send a bit 1 to KS103

Address+1 such as KS103'S "Oxe8+1" Receive the register "2"'s data Address+1 such as KS103'S "Oxe8+1" Receive the register "3"'s data
START 1 4 1 0 1 0 0 1 xxxxxxxdeST,ABT111O1001 X X X X % x x x Not STOP

Read any register(Such as register 3): ®
| Address [Register 3 [Address+1 | Read Register 3 |
ACK : Host wait a bit 0 from KS103
Not ACK : Host send a bit 1to KS103
Address such as KS103'S "Oxda" Wtite the register number such as "3" Address+1 then will be "Oxda+1" Receive the register "3" 's data
START 1 1 0 1 1 0 1 0 0000 00011 SAR 4149 01 10 1 1 X X X x x x x x Not STOP

Note 5: To read any register will be OK except register 2 and register 3. If you want to read register 2 and register 3, you must send

detecting command to register 2 first. Note that all detecting command are stored in the register 2.

Further power saving measures

If you want to save power, you can send command Oxcl to turn off LED flash to reduce current
consumption. Send command 0xc0 will turn on LED flash when detecting.

LED flash when decting will be a default configuration.

The configuration of LED flash mode is automatically saved after configured, and immediately
working under the new configuration. KS101B/KS103/KS103S will be run according to the new
configuration when restart.

Follow the attached files 3, the configuration code should be as follows:

write_byte (OxeS8, 2,0 xcl), //close LED flash

delayms (2000);

KS101B/KS103/KS103S will be run according to the new configuration when restart.

Sleep waiting time settings

The default setting of sleep mode is to wait five seconds, KS101B/KS103/KS103S will enter sleep
mode automatically if there’s no detecting command in five seconds. Another sleep mode is to
wait one seconds. Send command Oxc5 through the I°C bus will change KS101B/KS103/KS103S
to one seconds waiting sleep mode; and send command 0xc4 the five seconds waiting sleep mode
can be restored.

The configuration of sleep mode is automatically saved after configured, and immediately
working under the new configuration. KS101B/KS103/KS103S will be run according to the new
configuration when restart.

Follow the attached files 3, the configuration code should be as follows:

write_byte (0xe8, 2,0 xc5), //one seconds waiting

delayms (2000);

KS101B/KS103/KS103S will be run according to the new configuration when restart.

TTL serial mode

To use the KS101B/KS103/KS103S in Serial mode, make sure the MODE pin is connected to Ov

10

Ground before power on.

Serial data is fixed at 9600 baud 1 start, 1 stop and no parity bits. Serial data is a TTL level signal,
It is not RS232 level. Do not connect the KS101B/KS103/KS103S to a RS232 port - it will
destroy the module. If you would like to connect the KS101B/KS103/KS103S to your PC’s RS232
port, you must use a MAX232 or similar device. Or use the KS10R(seen in www.dauxi.com) to
connect your PC with KS101B/KS103/KS103S. The KS10R is a USB-to-TTL serial converter.
KS101B/KS103/KS103S’s connection:

As shown, there’s five pins “VCC, SDA/TX, SCL/RX, GND, MODE” on
KS101B/KS103/KS103S’s board. The VCC pin should connect to master’s VCC, the VCC must
be in range of 3.0-5.5V ®. The GND connect to master’s ground. The MODE pin should be
connected to Ov Ground before power on. The SDA/TX should connect to MCU’s RXD pin, the
SCL/RX should connect to MCU’s TXD pin.

Note 6: To achieve KS101B/KS103/KS103S°S best working conditions recommended +5 V power supply. Moreover, VCC and GND is
strictly prohibited reverse, it may damage the circuit.

Here’s the circuit diagram(no more than 2 PCS KS101B/KS103/KS103S on TTL serial bus):

KS103-0XD0 KS103-0XD2

KS101B/KS103/KS103S’s default address is 0xe8 and can be change to the one of 0xd0, 0xd2 ,
0xd4, 0xd6, 0xd8, Oxda, Oxdc, Oxde, 0xe0, 0xe2, Oxed, Oxe6, 0xe8, Oxea, Oxec, Oxee, 0xf8, Oxfa,
Oxfe, Oxfe. 7

Note 7: 0xdO~Oxfe except address “0xf0, 0xf2, 0xf4,0xf6”, the same to I°C address. Only no more than 2 modules can be connect

together in TTL serial bus.

Sequence of change TTL serial address

New
Address

Delay
Ims

Delay
Ims

Delay
Ims

Delay

0x9a 100ms

| Address ‘ 2 Address

Address | 2 ‘ 0x92 ‘ | Address

2 | 0x9e

|

Change TTL serial address must follow the sequence and the delay time showed on table is the
least delay time. After changing LED will light for 5 seconds. You can’t cut off the power when
changing TTL serial address or the EEPROM may be corrupted .After changing, repower
KS101B/KS103/KS103S and the LED on the back board will flash the new address in binary
system. The change I°C address function should not put in loop for ever such as while(1) loop. We
suggest put it in initialization function, to make sure change TTL serial address function run just
one time when power up.

KS101B/KS103/KS103S’s Work Sequence

After power on KS101B/KS103/KS103S, back green LED will flash the 8-bit address in binary
system. Short flash twice will be “1”, slow flash once will be “0”. Such as address Oxea, it's
0B11101010 in binary system, the green LED will be slow light — off — short flash twice — off

11

— short flash twice — off — short flash twice — off — slow flash once — off — short flash twice

— off — slow flash once — off — short flash twice — off — slow flash once.

@®

Note 8: LED flashing green light may stimulate the eyes, try not to look at flashing LED directly, you can use the corner of the eye to

observe the flashing.

After power up, when KS101B/KS103/KS103S receive valid command, it will stop flashing and
begin to detecting at once. The LED will flash once when detecting once.
KS101B/KS103/KS103S use the TTL serail interface to communicate with master, automatic
response to master control command s for the 8-bit data, there’s command send process:

TTL serial address(0xe8) —>delay 20~100us—>register(0x02)—> delay 20~100us—> detecting

command s(Oxbc)—>receive high 8 bit data on serial bus—=>receive low 8 bit data on serial bus

KS101B/KS103/KS103S work in serial mode, only write register 0x02 will be valid, write other
register values will not respond. When the KS101B/KS103/KS103S finish detecting, it will send
the 16 bit data to master automatically. The master can use MCU’s serial interrupt to receive the

16 bit data, when finish receiving the 16 bit data, you can begin another detecting. Otherwise the

port will return an incorrect value. Each detecting command should be:

TTL serial address

Register 2 |

8 bit data command |

Command and register list of TTL serial Mode:

Register | Command Return value Return value Note
range(Decimal) range(Hex)

2| o0r | s | oxs0on2atus | Kks ST Mo S v W e
2| oo | solishs | onouszgs | Kk T B, i v i e
2 | 00 | oot | onnonecns | Kamte oo M v M e
2| 00s | 502508 | ons00n90kys | Kkt Tt S, v i
2| 005 | saussis | oxszowbisus | Kamte ol bt S s v M e
2| 006 | o3k | oxs0onasous | Kamte oTshet e s v M e
2|00 | ovaomous | oneonierus | Kk sTobent o s s M i
2| 008 | sodotus | 0xs00x1208us | Kate oTehot M s v M e
2|00 | 505193 | ons00nia4sps | Kkt Tt M, v i e
2| 000 | cosTiou | ondnOntsaus | Kk ol 1t s i Mo e
2 | 000 | onens | oxsconiseos | Kamis bt i i v Mo e
I I T v o
2| 00a | 9550t | Oxse0utaiaus | Kats ST I s i i i
2 | o0 | mosorsus | ocerOnimeps | Kk ot it i i Mo e
2| o0r | mossssus | 0uib0cictus | Mmts ST 1, s i e
2|00 | moomsns | onroaaous | Kk ot 1, s i Mo e
o I B e T e v
2 0x12 77-10386us 0x4d-0x2892us | Range of about 1800mm, return ps. Maximum time

12

consume = Maximum return value + 1000pus

Range of about 1900mm, return ps. Maximum time

2 0x13 77-10963ps 0x4d-0x2ad3ps consume = Maximum return value + 1000us

Range of about 2000mm, return ps. Maximum time
2 Ox14 79-11540ps 0x4£-0x2d14ps consume = Maximum return value + 1000us

Range of about 2100mm, return ps. Maximum time
2 Ox15 63-12117ps 0x3£-0x2f55ps consume = Maximum return value + 1000us

Range of about 2200mm, return ps. Maximum time
2 0x16 79-12694ps 0x4£-0x3196ps consume = Maximum return value + 1000us

Range of about 2300mm, return ps. Maximum time
2 0x17 79-13271ps 0x4£-0x33d7ps consume = Maximum return value + 1000us

Range of about 2400mm, return ps. Maximum time
2 0x18 79-13848us 0x4£-0x3618ps consume = Maximum return value + 1000us

Range of about 2500mm, return ps. Maximum time
2 0x19 77-14425ps 0x4d-0x3859us consume = Maximum return value + 1000us

Range of about 2600mm, return ps. Maximum time
2 Oxla 93-15002ps 0x5d-0x3a9aps consume = Maximum return value + 1000us
2 0x1b 63-15579ps 0x3£-0x3cdbps Range ofiabout '2700mm, return ps. Maximum time

consume = Maximum return value + 1000us

Range of about 2800mm, return ps. Maximum time
2 Oxlc 79-16156ps 0x4£-0x3flcps consume = Maximum return value + 1000us

Range of about 2900mm, return ps. Maximum time
2 Ox1d 79-16733ps 0x4£-0x415dps consume = Maximum return value + 1000us

Range of about 3000mm, return ps. Maximum time
2 Oxle 79-17310ps 0x4f-0x439eps consume = Maximum return value + 1000us

Range of about 3100mm, return ps. Maximum time
2 Ox1f 77-17887ps 0x4d-0x45dfps consume = Maximum return value + 1000us

Range of about 3200mm, return ps. Maximum time
2 0x20 91-18464ps 0x5b-0x4820ps consume = Maximum return value + 1000us

Range of about 3300mm, return ps. Maximum time
2 0x21 79-19041ps 0x4f-0x4a61ps consume = Maximum return value + 1000us
2 0x22 79-19618ps 0x4f-0xdcaus Range ofiabout '3400mm, return ps. Maximum time

consume = Maximum return value + 1000us

Range of about 3500mm, return ps. Maximum time
2 0x23 79-20195ps Ox4f-Oxdee3ps consume = Maximum return value + 1000us

Range of about 3600mm, return ps. Maximum time
2 0x24 79-20772ps 0x4£-0x5124ps consume = Maximum return value + 1000us

Range of about 3700mm, return ps. Maximum time
2 0x25 77-21349ps 0x4d-0x5365ps consume = Maximum return value + 1000us

Range of about 3800mm, return ps. Maximum time
2 0x26 79-21926ps Ox4f-0x55a6ps consume = Maximum return value + 1000us
2 0x27 63-22503 s 0x3£-0x57e7ps Range ofiabout '3900mm, return ps. Maximum time

consume = Maximum return value + 1000us

Range of about 4000mm, return ps. Maximum time
2 0x28 79-23080ps 0x4f-0x5a28us consume = Maximum return value + 1000us

Range of about 4100mm, return ps. Maximum time
2 0x29 63-23657us 0x3£-0x5¢69us consume = Maximum return value + 1000us

Range of about 4200mm, return ps. Maximum time
2 0x2a 79-24234ps Ox4f-OxSeaaps consume = Maximum return value + 1000us

Range of about 4300mm, return ps. Maximum time
2 0x2b 79-24811ps 0x4£-0x60ebus consume = Maximum return value + 1000us

Range of about 4400mm, return ps. Maximum time
2 Ox2c 79-25388ps 0x4£-0x632cps consume = Maximum return value + 1000us

Range of about 4500mm, return ps. Maximum time
2 0x2d 77-25965ps 0x4d-0x656dps consume = Maximum return value + 1000us
2 0x2e 79-26542ps 0x4f-0x67aeps Range ofiabout'4600mm, return ps. Maximum time

consume = Maximum return value + 1000us

Range of about 4700mm, return ps. Maximum time
2 0x2f 63-27119ps 0x3f-0x69efjus consume = Maximum return value + 1000us

. . First level noise reduction, factory default settings,
2 0x70 void void for battery-powered
2 0x71 void void Second level noise reduction, for USB-powered
. . Third level noise reduction, for long distance

2 0x72 void void USB-powered
2 0x73 void void Fourth level noise reduction, for switching power

supply

13

. . Fifth level noise reduction, for noisy switching
2 0x74 void void power supply
2 0x75 void void Sixth level noise reduction, for high noise power
supply
2 Ox8a void void I12C communications test command, after sending
2 0x8b void void LED will flash display the binary value of the
; ; command
2 0x8c void void
2 0x92 void void The second sequence change address
2 0x9a void void The first sequence change address
2 0x9e void void The third sequence change address
Light intensity detect, the light is stronger, the
2 0xa0 0-1023 0-0x3ff greater the value, the detect takes about 1ms
0-5m range, normal range (without temperature
2 0xb0 10-5200mm 0x0a-0x1450mm | revised), return mm, detection took about 33ms
maximum
0-5m range, normal range (without temperature
2 0xb2 79-30000ps 0x4f-0x7530us | revised), return ps, detection took about 32ms
maximum
0-5m range, normal range (with temperature
2 0Oxb4 10-5200mm 0x0a-0x1450mm | revised), return mm, detection took about 87ms
maximum(KS103S doesn’t support this command)
0-11m range, normal range (without temperature
2 0xbg& 20-11280mm | 0x14-0x2c10mm | revised), return mm, detection took about 68ms
maximum
0-11m range, normal range (without temperature
2 Oxba 159-65278us 0x9f-Oxfefeus | revised), return ps, detection took about 66ms
maximum
0-1lm range, normal range (with temperature
2 Oxbc 20-11280mm | 0x14-0x2c10mm | revised), return mm, detection took about 87ms
maximum(KS103S doesn’t support this command)
2 0xc0 void void Open LED flash when detecting, default
2 Oxcl void void Close LED flash when detecting
2 0xc2 void void SCL line force to low when detecting, the default
2 0xc3 void void SCL line keep high level when detecting
2 Oxc4 void void 5 seconds for sleep waiting
2 0xc5 void void 1 seconds for sleep waiting
Return 9-bit precision temperature data, according to
DS18B20 format, range of -40 C - +125 C,
2 0xc9 0-255 0-Oxff detection takes about 83ms(KS103S doesn’t support
this command)
Return 10-bit precision temperature data, according
to DS18B20 format, range of -40 C - +125 C,
2 Oxca 0-255 0-Oxff detection takes about 168ms(KS103S doesn’t
support this command)
Return 11-bit precision temperature data, according
to DS18B20 format, range of -40 ‘C - +125 C,
2 Oxcb 0-255 0-Oxff detection takes about 315ms(KS103S doesn’t
support this command)
Return 12-bit precision temperature data, according
to DS18B20 format, range of -40 ‘C - +125 C,
2 Oxce 0-255 0-Oxff detection takes about 610ms(KS103S doesn’t
support this command)
Table 2

All of the commands in register 2 have the same function with the I12C command.

Sequence
Send detect command to KS101B/KS103/KS103S(Only register 2):
| TTL serial address | Delay 20~100us | Register 2 | Delay 20~100us 8 bit command

14

Receive 16 bit data suggest the use of the serial port interrupt, so the microcontroller can spare

time to do other things:

| High 8 bit | Low 8 bit |
When finish receive 16 bit data, you can begin to send the next detect command (such as
“0xe8+0x02+0xbc™).

Sleep mode

In TTL serial mode, the module will not get into sleep.
Beam Angle:
Tested at 40.0Khz frequency

1]
[a0

330 ’r A
o /TSN o
05 @,\

2
a2
. a0

Ny

Fixing Size(Unit:mm)
KS101B:

~/ lnnnnnnn

15

20
\

15

O
AN AL

23 12
37.6 13.6
42 17.6

Suggest using M3 screw and M3 or @3 boss.

Package details:
1) Size of KS101B: 50mmx24mmx17mm
2) Size of KS103/KS103S: 42mm X 20mm X 17mm;
2) Weight: KS101B:11g; KS103/KS103S:9g.
3) Package size: KS101B/ KS103/KS103S:85mmx80mmx32mm(1PCS/each box)
4) Package weight: KS101B/ KS103/KS103S:75¢g -

Attached files:

1) Use PIC16F877A to control KS101B/KS103/KS103S(Hardware I°C)

2) Use PIC16F877A to control KS101B/KS103/KS103S(simulate I°C)

3) Use 51 MCU to control KS101B/KS103/KS103S(simulate I°C)

4) Use STM32 CORTEX-3 ARM MCU to control KS101B/KS103/KS103S(simulate I°C)
5) KS101B/KS103/KS103S vedio show:

http://v.youku.com/v_show/id XMjYwMjUwNTg4.html

Twenty KS101B/KS103/KS103S working on I12C bus:

http://v.youku.com/v_show/id XMjYxMzMxNDE2.html

16

1) Use PIC16F877A to control KS101B/KS103/KS103S(Hardware I°C)
/*connection: PIC16F877A’s IO PORT SCL. SDA conect to KS101B/KS103/KS103S’s SCL.
SDApin. PIC16F877A’s SCL. SDA need a 4.7K resistance pull-up*/

#include <pic.h> //AMHz

__ CONFIG(0x3d76); //IWDT open
#define DELAY() delay(10)

#difine SCL RC3 // a 4.7K resistance pull-up
#difine SDA RC4 // a 4.7K resistance pull-up

void setup(void);

unsigned int detect KS101B/KS103/KS103S(unsigned char ADDRESS, unsigned char command);

void delay(unsigned int ms);

void change address(unsigned addr_old,unsigned char addr_new);

void send_command(unsigned char cmd);

void display(unsigned int distance,unsigned int delay); //display function,you should apply it to the master
unsigned int distance;

void main(void)

{
setup();
//change address(0xe8,0xe0); //change default address 0xe8 to 0xe0
while(1)
{
CLRWDT();
distance = detect KS101B/KS103/KS103S(0xe8,0xb4); //Address:0xe8; command:0xb4.
//Get detect result from KS101B/KS103, 16 bit data.
display(distance,100); //display function,you should apply it to the master
delayms(200);
h
h

void display(unsigned int distance,unsigned int delay); //display function,you should apply it to the master

{

CLRWDT();

}

void change address(unsigned addr_old,unsigned char addr_new)

{
SEN=1; // send start bit to KS101B/KS103/KS103S
while(SEN); // wait for it to clear
while(!SSPIF); // wait for interrupt
SSPIF =0; // then clear it.
SSPBUF = addr_old; // KS101B/KS103/KS103S’s 12C address
while(!SSPIF); // wait for interrupt
SSPIF =0; // then clear it.
SSPBUF = 2; // write the register number
while(!SSPIF); // wait for interrupt
SSPIF =0; // then clear it.
SSPBUF = 0x9a; //command=0x9a, change [2C address, first sequence
while(!SSPIF);
SSPIF = 0;
PEN=1; // send stop bit
while(PEN);

DELAY(); //'let KS101B/KS103/KS103S to break to do something
SEN=1; // send start bit
while(SEN); // and wait for it to clear
while(!SSPIF);
SSPIF = 0;
SSPBUF = addr_old; // KS101B/KS103/KS103S’s 12C address
while(!SSPIF); // wait for interrupt

17

SSPIF =0; // then clear it.

SSPBUF =2; // address of register to write to
while(!SSPIF); /
SSPIF = 0;
SSPBUF = 0x92; //command=0x92, change I2C address, second sequence
while(!SSPIF); /l
SSPIF = 0;
PEN=1; // send stop bit
while(PEN); //
DELAY(); // 1let KS101B/KS103/KS103S to break to do
something
SEN=1; // send start bit
while(SEN); // and wait for it to clear
while(!SSPIF);
SSPIF = 0;
SSPBUF = addr_old; // KS101B/KS103/KS103S’s 12C address
while(!SSPIF); // wait for interrupt
SSPIF =0; // then clear it.
SSPBUF =2; // address of register to write to
while(!SSPIF); /!
SSPIF = 0;
SSPBUF = 0x9e; //command=0x9e,, change 12C address,third sequence
while(!SSPIF); // wait for interrupt
SSPIF =0; // then clear it.
PEN=1; // send stop bit
while(PEN); /l
DELAY(); // let KS101B/KS103/KS103S to break to do
something
SEN=1; // send start bit
while(SEN); // and wait for it to clear
while(!SSPIF);
SSPIF = 0;
SSPBUF = addr_old; // KS101B/KS103/KS103S’s 12C address
while(!SSPIF); // wait for interrupt
SSPIF =0; // then clear it.
SSPBUF = 2; // address of register to write to
while(!SSPIF); /
SSPIF = 0;
SSPBUF = addr_new; //new address, it will be 0xd0~0xfe(without 0xf0,0xf2,0xf4,0xf6)
while(!SSPIF); /l
SSPIF = 0;
PEN=1; // send stop bit
while(PEN); //
DELAY(); // 1let KS101B/KS103/KS103S to break to do
something

}

unsigned int detect KS101B/KS103/KS103S(unsigned char ADDRESS, unsigned char command)
{ // ADDRESS will be KS101B/KS103/KS103S’s address such as 0xb0, command will be the detect command
such as 0xb4
unsigned int range=0;
SEN=1; // send start bit

18

while(SEN);
while(!SSPIF);
SSPIF = 0;

SSPBUF = ADDRESS;
while(!SSPIF);
SSPIF = 0;

SSPBUF =2;
while(!SSPIF);

SSPIF =0;

SSPBUF = command;

while(!SSPIF);
SSPIF = 0;
/l

PEN=1;
while(PEN);

TMRI1H = 0;
ranging
TMRIL = 0;
T1CON = 0x31;
TMRIIF = 0;
while((!SCL) || (' TMR1IF))display(distance,100);
TMRI1ON = 0;

// and wait for it to clear

// KS101B/KS103/KS103S’s 12C address
// wait for interrupt
// then clear it.

// address of register to write to
//

1

// send stop bit
1

// delay while the KS101B/KS103/KS103S is

//configuration of TIME1

/lclean TIME] interrupt flag

/lyou can delete the display function
// stop timer

// finally get the range result from KS101B/KS103/KS103S

SEN=1;
while(SEN);
ACKDT =0;
SSPIF = 0;

SSPBUF = ADDRESS;
while(!SSPIF);
SSPIF = 0;

SSPBUF =2;
while(!SSPIF);
SSPIF = 0;

RSEN=1;
while(RSEN);

SSPIF = 0;

SSPBUF = ADDRESS+1;
while(!SSPIF);
SSPIF = 0;
RCEN=1;
while(!BF);

range = SSPBUF<<§;
ACKEN = 1;
while(ACKEN);
RCEN = 1;
while(!BF);

range += SSPBUF;
ACKDT=1;
ACKEN = [;
while(ACKEN);
PEN =1,
while(PEN);

return range;

// send start bit
// and wait for it to clear
/I acknowledge bit

// KS101B/KS103/KS103S 12C address
// wait for interrupt
// then clear it.

// address of register to read from - high byte of result
//
//

// send repeated start bit
// and wait for it to clear
I

// KS101B/KS103/KS103S 12C address - the read bit is set this time

// wait for interrupt
// then clear it.
// start receiving
// wait for high byte of range
// and get it
// start acknowledge sequence
// wait for ack. sequence to end
// start receiving
// wait for low byte of range
// and get it
// not acknowledge for last byte
// start acknowledge sequence
// wait for ack. sequence to end
// send stop bit
1/l

19

void send_command(unsigned char command) //send a 8-bit command to KS101B/KS103/KS103S
{
SEN=1; // send start bit
while(SEN); // and wait for it to clear
while(!SSPIF);
SSPIF = 0;
SSPBUF = ADDRESS; // KS101B/KS103/KS103S 12C address
while(!SSPIF); // wait for interrupt
SSPIF =0; // then clear it.
SSPBUF = 2; // address of register to write to
while(!SSPIF); //
SSPIF = 0;
SSPBUF = command;
while(!SSPIF); /l
SSPIF = 0;
PEN=1; // send stop bit
while(PEN); /l
§

void setup(void) //PIC16F877A’s hardware init
{
SSPSTAT = 0x80;
SSPCON = 0x38;
SSPCON2 = 0x00;
SSPADD = 50;
OPTION=0B10001111; //PSA=1; 1:128 to WDT, WDT must clear in 32.64ms
TRISC=0B00011000;
PORTC=0x01;
RBIE=0;
}

void delay(unsigned int ms)
{
unsigned char i;
unsigned int j;
for(i=0;i<70;i++)
for(j=0;j<ms;j++)CLRWDT();
b

2) Use PIC16F877A to control KS101B/KS103/KS103S(simulate I°C)

#include <pic.h> //AMHz

_ CONFIG(XT&WDTEN); //WDT open

#define SDA RD6 // a4.7K resistance pull-up
#define SCL RDS5 // a4.7K resistance pull-up

#define SDAPORT TRISD6 //
#define SCLPORT TRISD5 //RD6, RD5 can change to any other I/O port
void delay(void) //short delay
{
unsigned char k;
for(k=0;k<180;k++)
asm("CLRWDT");

}
void delayms(unsigned char ms) //delay some ms
{
unsigned int i,j;
for (i=0;i<ms;i++)
for(j=0;j<110;j++)
asm("CLRWDT");
}
void i2cstart(void) // start the i2¢ bus
{
SCLPORT=0;
SDAPORT=0;

20

SCL=1;
asm("NOP");
SDA=1;
delay();
SDA=0;
delay();
SCL=0;
delay();

asm("NOP"); asm("NOP");

}
void i2cstop(void) // stop the i2¢ bus

{

SDA=0;
SCLPORT=0;
SDAPORT=0;
SDA=0;
asm("NOP");
SCL=1;
delay();
SDA=1;
delay();

asm("NOP"); asm("NOP");

}

void bitin(void)

{

//read a bit from i2¢ bus

eepromdi=1;
SCLPORT=0;
SDAPORT=1;
SCL=1;
asm("NOP");
eepromdi=SDA;
asm("NOP");
SCL=0;
asm("NOP");

asm("NOP"); asm("NOP");

asm("NOP"); asm("NOP");

asm("NOP"); asm("NOP");

}

void bitout(void) //write a bit to i2¢ bus

{
SCLPORT=0;
SDAPORT=0;
SDA=eepromdo;
asm("NOP");
SCL=1;
asm("NOP");
SCL=0;
asm("NOP");

asm("NOP"); asm("NOP");

asm("NOP"); asm("NOP");

asm("NOP"); asm("NOP");

}

asm("NOP");

asm("NOP");

asm("NOP");
asm("NOP");

asm("NOP");

asm("NOP");
asm("NOP");

asm("NOP");

void i2cwrite(unsigned char sedata) //write a byte to i2¢ bus

{

unsigned char k;
for(k=0;k<8;k++)
{
if(sedata&0x80)

{

eepromdo=1;

eepromdo=0;
}
sedata=sedata<<1;
bitout();
h
bitin();
h

unsigned char i2cread(void)

//read a byte from i2¢ bus

21

asm("NOP");

asm("NOP");

asm("NOP");
asm("NOP");

asm("NOP");

asm("NOP");
asm("NOP");

asm("NOP");

unsigned char redata;
unsigned char m;
for(m=0;m<§;m++)
{

redata=redata<<l1;
bitin();
if(eepromdi==1)

{

redataj=0x01;

redata&=0xfe;
}
asm("NOP");
}
eepromdo=1;
bitout();
return redata;

}

unsigned char KS101B/KS103/KS103S_read(unsigned char address,unsigned char buffer)
/1111111 Iread register: address + register ,there will be 0xe8 + 0x02/0x03
{

unsigned char eebuf3;
/" unsigned int range;

i2cstart();

i2cwrite(address);

i2cwrite(buffer);

i2cstart();

i2cwrite(address+1);

i2cstart();

eebuf3=i2cread();

i2cstop();

return eebuf3;

}

void KS101B/KS103/KS103S_write(unsigned char address,unsigned char buffer,unsigned char command)
I Fwrite a command: address + register + command,there will be 0xe8 + 0x02 + 0xb0

{

i2cstart();
i2cwrite(address);
i2cwrite(buffer);
i2cwrite(command);
i2cstop();
}
void change i2c address(addr_old,addr new)// addr old is the address now, addr_new will be the new address
{ //that you want change to
delayms(200); //Protect the eeprom,you can delete this
KS101B/KS103/KS103S_write((addr_old,2,0x9a);
delayms(1);
KS101B/KS103/KS103S_write(addr_old,2,0x92);
delayms(1);
KS101B/KS103/KS103S_write(addr_old,2,0x9¢);
delayms(1);
KS101B/KS103/KS103S_write(addr_old,2, addr_new);
delayms(100); //Protect the eeprom,you can delete this
}

unsigned int detect KS101B/KS103/KS103S(unsigned char address, unsigned char command)
{

unsigned int rangel;

22

KS101B/KS103/KS103S_write(address,2,command);

delayms(1);

delayms(80); //this delat should be longer if detecting the temperature, and can be delete
//SCLPORT=1;while(!SCL);

// delayms(80) can change to “ SCLPORT=1;while(!SCL);” to improve the detection efficiency
rangel = KS101B/KS103/KS103S_read(address,2);

rangel =(range1<<8) + KS101B/KS103/KS103S_read(address,3);

delayms(5);

return rangel;

}

void main(void)
{
unsigned int range;
//change i2c¢_address(0xe8,0xfe); //change default address Oxe8 to Oxfe
delayms(200);
while(1)
{
asm("CLRWDT");
range = detect KS101B/KS103/KS103S(0xe8,0xb4); //you just need the only one sentence to get the
range.
delayms(200);

3) Use 51 MCU to control KS101B/KS103/KS103S(simulate I°C)

#include <reg51.h> //12.0MHz

#include <intrins.h>

sbit SDA=P3"6; // a resistance 4.7k pull-up
sbit SCL=P3"7; // a resistance 4.7k pull-up

unsigned int range;
void display(unsigned int range)

{
/linput your display function,please.
}
void delay(void) //short delay
{
nop(); _nop_(); _nop_(); _nop_();
nop(); _nop_(); _nop_(); _nop_();
nop(); _nop_(); _nop_(); _nop_();
nop(); _nop_(); _nop_(); _nop_();
}
void start(void) /M2C start
{
SDA=1,
delay();
SCL=1;
delay();
SDA=0;
delay();
}
void stop(void) /12C stop
{
SDA=0;
delay();
SCL=1;
delay();
SDA= 1;
delay();
§

23

void ack(void) /lack
{

unsigned char i;

SCL=1;

delay();

while(SDA == 1 && i < 200)

{

}
SCL=0;
delay();

i+

>

}

void no_ack() /Mot ack
{
SDA= 1;
delay();
SCL=1;
delay();
SCL=0;
delay();
}

void i2¢_write byte(unsigned char dat) /Iwrite a byte
{
unsigned char i;
SCL=0;
for(i=0;1<8;i++)
{
if(dat & 0x80)

{
}

else

{
H

dat = dat << 1;
delay();
SCL=1;
delay();
SCL=0;
delay();

SDA=1;

SDA = 0;

}
SDA=1;
delay();

}

unsigned char i2¢_read_byte(void) //read a byte
{
unsigned char i,dat;
SCL=0;
delay();
SDA=1;
delay();
for(i=0;1<8;i++)
{
SCL=1;
delay();
dat =dat << 1;
if(SDA==1)
{

24

dat++;

}
SCL=0;
delay();
}
return dat;
h
void init_i2¢(void) //i2¢ init
{
SDA=1;
SCL=1;
h

void write_byte(unsigned char address,unsigned char reg,unsigned char command) //address+register+command
{
init_i2¢();
start();
i2c_write_byte(address);
ack();
i2¢c_write_byte(reg);
ack();
i2c_write_byte(command);
ack();
stop();
h

unsigned char read_byte(unsigned char address,unsigned char reg) //address(with bit 0 set) + register
{

unsigned char dat;
init_i2¢();
start();
i2c_write_byte(address);
ack();
i2c_write_byte(reg);
ack();
start();
i2c_write_byte(address+1);
ack();
delay();
delay();
delay();
delay();
delay(); //follow the sequence
dat =1i2c_read byte();
no_ack();
stop();
return dat;

}

void delayms(unsigned int ms) //delay ms
{
unsigned char i;
unsigned int j;
for(i=0;i<110;i++)
for(j=0;j<ms;j++);

}

void change i2¢_address(unsigned char addr_old,unsigned char addr_new)

// addr_old is the address now, addr_new will be the new address

{ //that you want change to
delayms(2000); // Protect the eeprom ,you can delete this sentence
write_byte(addr_old,2,0x9a);

25

delayms(1);

write_byte(addr_old,2,0x92);

delayms(1);

write_byte(addr_old,2,0x9¢);

delayms(1);

write_byte(addr_old,2, addr_new);

delayms(500); //Protect the eeprom, you can delete this sentence

}

unsigned int detect(unsigned char address,unsigned char command) //0xe8(address) + 0xbO(command)

{

unsigned int distance,count;

write_byte(address,2,command); //luse command "0xb0" to detect the distance
delayms(1); //delay

//delayms(80); //the delay should follow the time show in table 1
count=800;while(--count || !SCL)display(range); /Iwait for detecting end

/! while(!SCL)display(range); //you can delete “display(range)”
/I also can use while(!SCL)

distance=read_byte(address,2);

distance <<= 8§;

distance +=read_byte(address,3);

return distance; //return 16 bit distance in millimeter
}
void main(void)
{
//change i2¢_address(0xe8,0xfe); //change default address Oxe8 to Oxfe
while(1)
{
range = detect(0xe8,0xb0);
//0xe8 is the address; 0xb0 is the command.you just need the only one sentence to get the range.
//display(range);
delayms(200);
H
}

4) Use STM32 CORTEX-3 ARM MCU to control KS101B/KS103/KS103S(simulate I*C)

#include <stm32f10x_lib.h>
#include "sys.h"

#include "usart.h"

#include "delay.h"

u8 KS103_ReadOneByte(u8 address, u8 reg)

{
u8 temp=0;
IIC_Start();
IIC_Send Byte(address); //send address
IIC_Wait_Ack();
IIC Send Byte(reg); //send register
IIC_Wait_Ack();
IIC_Start();
IIC_Send Byte(address + 1); //begin to receive
IIC_Wait_Ack();
delay_us(50); //follow the Sequence
temp=IIC_Read Byte(0); //read register
IIC_Stop(); //stop
return temp;
}

26

void KS103_ WriteOneByte(u8 address,u8 reg,u8 command)
{

IIC_Start();
IIC Send Byte(address);
IIC_Wait_Ack();
IIC _Send Byte(reg);
IIC_Wait_Ack();
IIC_Send Byte(command);
IIC_Wait_Ack();
IIC_Stop();

void IIC_Init(void)

{
RCC->APB2ENRJ|=1<<4; //enable 10 clock of PORTC
GPIOC->CRH&=0XFFFOOFFF; //PC11/12 output
GPIOC->CRH|[F0X00033000;
GPIOC->ODR[=3<<11; //PC11,12 output high level

}

void IIC_Start(void)
{

//TIC start

SDA_OUT();

[IC_SDA=1;

IIC_SCL=1;

delay us(10);

IIC_SDA=0; //START:when CLK is high,DATA change form high to low
delay us(10);

IIC_SCL=0; //clamp 12C bus, prepare to send or receive

}

void IIC_Stop(void)
{
SDA_OUT();
IIC_SCL=0;
IIC_SDA=0; //STOP:when CLK is high DATA change form low to high
delay_us(10);
IIC_SCL~=1;
IIC_SDA=1; /Istop IIC bus
delay us(10);
}
//wait for ack
//return: 1, fail
// 0, success
u8 IIC_Wait Ack(void)
{
u8 ucErrTime=0;
SDA_IN();
IIC_SDA=1;delay us(6);
IIC_SCL=1;delay us(6);
while(READ SDA)

{
ucErrTime++;
if(ucErrTime>250)
{
IIC_Stop();
return 1;
h
}

27

IIC_SCL=0;
return 0;
}
//ACK
void TIC_ Ack(void)
{

IIC_SCL=0;

SDA_OUT();

[IC_SDA=0;

delay us(10);

IIC_SCL=1;

delay us(10);

IIC_SCL=0;

h

/mo ACK

void IIC_NAck(void)
{

IIC_SCL=0;

SDA_OUT();

IIC_SDA=1;

delay_us(10);

IIC_SCL=1;

delay_us(10);

IIC_SCL=0;

h

//send one byte

void IIC_Send Byte(u8 txd)
{

u8 t;

SDA_OUT();
IIC_SCL=0;
for(t=0;t<8;t++)

{
IIC_SDA=(txd&0x80)>>7;
txd<<=1;

delay us(10);
IIC_SCL~1;
delay us(10);
IIC_SCL=0;
delay us(10);

}

//begin to send data

//read one byte, if ack=1, send ACK; if ack=0, send nACK

u8 IIC_Read Byte(unsigned char ack)
{
unsigned char i,receive=0;
SDA_IN();
for(i=0;i<8;i++)
{
IIC_SCL=0;
delay_us(10);

IIC_SCL=1;
receive<<=l;
if(READ_SDA)receive++;

delay us(5);

}
if (lack)
IIC_NAck();
else
IIC_Ack();
return receive;

//SDA input

//send nACK

//send ACK

28

int main(void)

{
ul6 range;
Stm32_Clock_Init(9); //config system clock
delay_init(72); //delay time init
uart_init(72,9600); //init serial port 1
while(1)
{
KS103_WriteOneByte(0XES,0X02,0XB0);
delay_ms(80);
range = KS103 ReadOneByte(0xe8, 0x02);
range <<= §;
range += KS103 ReadOneByte(0xe8, 0x03);
}
}

29

